很多小伙伴都关心人工智能十大经典算法(人工智能十大算法)相关问题,本文通过数据整理出人工智能十大经典算法(人工智能十大算法),一起来看看吧!
我这里有一张大图展示了学习人工智能从小白到真正掌握人工智能需要经历的阶段,以及每个阶段需要学习哪些算法,如下但个人觉得上面列出的不够的,有一些算法如动态规划、图论的算法、博弈论等都应该要学习的。算法是AI的背后“推手”AI算法是数据驱动型算法,是AI背后的推动力量。
人工智能的原理是什么?
谢邀!在回复《人类与AI(人工智能)如何相处?( https://www.wukong.com/answer/6955462920969830692/)》中谈了在面对拥有自我意识的机器人,人类该如何与之相处?又该遵从哪些伦理道德?接下来,借着回复此问题,向大家介绍一下AI的三大核心要素(也是AI的三大基石)——数据、算力和算法。
数据是AI算法的“饲料”在如今这个时代,无时无刻不在产生数据(包括语音、文本、影像等等),AI产业的飞速发展,也萌生了大量垂直领域的数据需求。在AI技术当中,数据相当于AI算法的“饲料”。机器学习中的监督学习(Supervised Learning)和半监督学习(Semi-supervised Learning)都要用标注好的数据进行训练(由此催生大量数据标注公司,对未经处理的初级数据进行加工处理, 并转换为机器可识别信息),只有经过大量的训练,覆盖尽可能多的各种场景才能得到一个良好的模型。
目前,数据标注是AI的上游基础产业,以人工标注为主,机器标注为辅。最常见的数据标注类型有五种:属性标注(给目标对象打标签)、框选标注(框选出要识别的对象)、轮廓标注(比框选标注更加具体,边缘更加精确)、描点标注(标注出目标对象上细致的特征点)、其他标注(除以上标注外的数据标注类型)。AI算法需要通过数据训练不断完善,而数据标注是大部分AI算法得以有效运行的关键环节。
算法是AI的背后“推手”AI算法是数据驱动型算法,是AI背后的推动力量。主流的算法主要分为传统的机器学习算法和神经网络算法,目前神经网络算法因为深度学习(源于人工神经网络的研究,特点是试图模仿大脑的神经元之间传递和处理信息的模式)的快速发展而达到了高潮。南京大学计算机系主任、人工智能学院院长周志华教授认为,今天“AI热潮”的出现主要由于机器学习,尤其是机器学习中的深度学习技术取得了巨大进展,并在大数据和大算力的支持下发挥巨大的威力。
当前最具代表性深度学习算法模型有深度神经网络(Deep Neural Network,简称DNN)、循环神经网络(Recurrent Neural Network,简称RNN)、卷积神经网络(Convolutional Neural Network,简称CNN)。谈到深度学习,DNN和RNN就是深度学习的基础。
DNN内部的神经网络层可以分为三类,输入层,隐藏层和输出层, 一般来说第一层是输入层,最后一层是输出层,而中间的层数都是隐藏层。DNN可以理解为有很多隐藏层的神经网络,是非常庞大的系统,训练出来需要很多数据、很强的算力进行支撑。算力是基础设施AI算法模型对于算力的巨大需求,推动了今天芯片业的发展。据OpenAI测算,2012年开始,全球AI训练所用的计算量呈现指数增长,平均每3.43个月便会翻一倍,目前计算量已扩大30万倍,远超算力增长速度。
在AI技术当中,算力是算法和数据的基础设施,支撑着算法和数据,进而影响着AI的发展,算力的大小代表着对数据处理能力的强弱。算力源于芯片,通过基础软件的有效组织,最终释放到终端应用上,作为算力的关键基础,AI芯片的性能决定着AI产业的发展。加快补齐AI芯片短板从技术架构来看,AI芯片可以分为四大类:通用性芯片(GPU,特点是具备通用性、性能高、功耗高)、半定制化芯片(FPGA,特点是可编程、功耗和通用性一般)、全定制化芯片(ASIC,特点是不能扩展、性能稳定、功耗可控)和类脑芯片(特点是功耗低、响应速度快)。
AI本质上是使用人工神经网络对人脑进行的模拟,旨在替代人们大脑中的生物神经网络。由于每个任务对芯片的要求不同,所以可以使用不同的AI芯片进行训练和推理。在过去二十年当中,处理器性能以每年大约55%的速度提升,内存性能的提升速度每年只有10%左右,存储速度严重滞后于处理器的计算速度。随着AI技术的发展,所需数据量变得越来越大,计算量越来越多,“内存墙”(指内存性能严重限制CPU性能发挥的现象)的问题越来越严重。
因此,存算一体(将部分或全部的计算移到存储中,计算单元和存储单元集成在同一个芯片,在存储单元内完成运算)有望成为解决芯片性能瓶颈及提升效能比的有效技术手段。目前,数据中心中核心算力芯片各类通用的GPU占主导地位。IDC的研究指出,2020年,中国的GPU服务器占据95%左右的市场份额,是数据中心AI加速方案的首选。
但IDC也做出预测,到2024年,其他类型加速芯片的市场份额将快速发展,AI芯片市场呈现多元化发展趋势。近些年来,我国AI虽然取得了不少的突破和进展(例如小i机器人主导了全球第一个AI情感计算的国际标准),并在国际上具备一定的竞争力,但AI芯片对外依赖较大(根据赛迪智库人工智能产业形势分析课题组研究指出,国内AI芯片厂商需要大量依靠高通、英伟达、AMD等国际巨头供货),并缺乏AI框架技术(深度学习主流框架TensorFlow、Caffe等均为美国企业或机构掌握)的支撑。
未来人们对科技的依赖会与日俱增,AI也将会成为大国竞争的焦点。为摆脱我国AI的短板,有专家表示AI芯片方面我国可以借鉴开源软件成功经验,降低创新门槛,提高企业自主能力,发展国产开源芯片;算法框架方面则可通过开源形成广泛的应用生态,广泛支持不同类型的AI芯片、硬件设备、应用等。算法、算力、数据作为AI核心三要素,相互影响,相互支撑,在不同行业中形成了不一样的产业形态,随着算法的创新、算力的增强、数据资源的累积,传统基础设施将借此东风实现智能化升级,并有望推动经济发展全要素的智能化革新,让人类社会从信息化进入智能化。
人工智能主要有哪些课程?
人工智能概念诞生于1956年世界达特茅斯会议上,但是走出实验室进入大众视野是这几年的事情。而且即使阿尔法狗打败了柯洁,可是它仅仅是单一领域的弱人工智能,离《西部世界》、《机械姬》这样的强人工智能还有很远的路要走。在2019年的人工智能商业化报告中详细阐述了现阶段人工智能所处的阶段以及未来的趋势,有兴趣的可以在评论处链接详细查看人工智能是未来的一个大趋势,而大学开设的人工智能专业的主要课程我们可以参看各大高校的参考方案。
1.东南大学(第四次学科排名中电子科学与技术专业评价为A)2018年开始招收本科生,主要学习课程有Python、神经网络、数字图像处理、数字信号处理、数据挖掘、人机交互等。2.北京邮电大学(第四次学科排名中电子科学与技术专业评价为A-)3.天津大学(第四次学科排名中电子科学与技术专业评价为B )列举了一些高校的课程安排,大概都有数据挖掘、数据结构、自然语言处理等,南大、北京航空航提都开设有人工智能专业,由于是新开设的学科,有些培养方案都未完全制定,各种课程的学习也还在探索中,但大都依托当初的计算机专业,从而衍生出人工智能专业,或者另外开辟出人工智能学院。
人工智能程序员入门应该学哪些算法?
我这里有一张大图展示了学习人工智能从小白到真正掌握人工智能需要经历的阶段,以及每个阶段需要学习哪些算法,如下但个人觉得上面列出的还不够的,还有一些算法如动态规划、图论的算法、博弈论等都应该要学习的。要真正精通人工智能是非常难的,要学的非常多,而且新的算法也在不断涌现,时刻要保持学习,不然很容易落后。。
对于人工智能而言,目前有哪些学习方法?
介绍一些工程师通用的学习方法~工具要非常熟练:在排查问题和写代码上,如果你1个小时只能尝试一种方法,别人却能够尝试10次,那么别人就是比你牛。天下武功唯快不破,你后续写demo、查问题、工具的熟练程度都会决定你学习和尝试新事物的速度。读书
更多人工智能十大经典算法(人工智能十大算法)相关问题请持续关注本站。