其实函数可导是什么意思的问题并不复杂,但是又很多的朋友都不太了解一个数可导意味着什么,因此呢,今天小编就来为大家分享函数可导是什么意思的一些知识,希望可以帮助到大家,下面我们一起来看看这个问题的分析吧!
一、可导的定义是什么意思
可导
设y=f(x)是一个单变量函数,如果y在x=x0处存在导数y′=f′(x),则称y在x=x[0]处可导。如果一个函数在x0处可导,那么它一定在x0处是连续函数。
函数可导定义:(1)设f(x)在x0及其附近有定义,则当a趋向于0时,若[f(x0+a)-f(x0)]/a的极限存在,则称f(x)在x0处可导。(2)若对于区间(a,b)上任意一点(m,f(m))均可导,则称f(x)在(a,b)上可导。
二、函数可导说明什么
函数在某点可导意味着在这段函数连续。因为函数可导则函数连续;函数连续不一定可导;不连续的函数一定不可导。
函数可导的充要条件:左导数和右导数都存在并且相等。一个函数在某一点的导数描述了这个函数在这一点附近的变化率。如果函数的自变量和取值都是实数的话,函数在某一点的导数就是该函数所代表的曲线在这一点上的切线斜率。
导数的本质是通过极限的概念对函数进行局部的线性逼近。例如在运动学中,物体的位移对于时间的导数就是物体的瞬时速度。
三、函数可导意味着什么
连续。可导必连续。
函数在定义域中一点可导需要一定的条件:函数在该点的左右两侧导数都存在且相等。这实际上是按照极限存在的一个充要条件(极限存在,它的左右极限存在且相等)推导而来。
可导的函数一定连续;连续的函数不一定可导,不连续的函数一定不可导。
关于本次函数可导是什么意思和一个数可导意味着什么的问题分享到这里就结束了,如果解决了您的问题,我们非常高兴。