很多朋友对于负数相乘为什么是正数和为什么两个负数相乘会得正数不太懂,今天就由小编来为大家分享,希望可以帮助到大家,下面一起来看看吧!
本文目录
为什么两个负数相乘会得正数
会。
两个负数相乘是正数。因为“两数相乘,同号得正”,两个正数与两个负数都属于同号。而且有理数乘法法则规定,是因为要让有理数的乘法与加法有和谐的联系,即要使乘法对于加法的分配律在有理数集中仍然成立。
每个大于1的自然数均可写为若干个质数的幂的积,而且这些素因子按大小排列之后,写法是唯一的。负数都比零小,则负数都比正数小。零既不是正数,也不是负数。则-a<0<(+)a,负数中没有最小的数,也没有最大的数。去除负数前的负号等于这个负数的绝对值。
负数乘负数为什么是正数
负数乘负数是正数的原因是,在数轴上,两个负数相距两个点的距离,而两个正数则相距两个正数的距离。因此,负数乘负数得到的结果是正数,因为它相当于两个负数相加,而在数轴上,两个负数相加得到的是正数。
为什么两个负数相乘会得出一个正数
有理数乘法法则这样规定是因为要让有理数的乘法与加法有和谐的联系,即要使乘法对于加法的分配律在有理数集中仍然成立。
我们在讲“有理数的乘法”一节时,先用一个实际生活中的例子:在一条东西向的笔直马路上,取一点O,以向东走的路程为正数,小玫从点O出发,以5千米/时的速度向西行走,那么经过3小时,她向西一共走了千米。从这个例子看,自然应当有(-5)×3=-(5×3)。
试问:3×(-5)等于多少呢(-5)×(-3)应怎样计算呢?我们规定有理数的乘法法则时,应当要求它满足乘法对于加法的分配律,以便把乘法与加法联系起来。而如果它满足分配律,那么就会有
3×(-5)+3×5=3×[(-5)+5]=3×0=0
这表明了3×(-5)与3×5互为相反数,从而有
3×(-5)=-(3×5)。
由上面的探索,数学上规定:“异号两数相乘得负数,并且把绝对值相乘”。根据类似的理由,数学上规定:“任何数与0相乘,都得0”。类似地,如果有理数的乘法满足分配律,那么就会有
(-5)×(-3)+(-5)×3=(-5)×[(-3)+3]=(-5)×0=0。
这表明(-5)×(-3)与(-5)×3互为相反数,从而有
(-5)×(-3)=-[(-5)×3]=-[-(5×3)]=5×3。
因此,数学上规定:“同号两数相乘得正数,并且把绝对值相乘”。
两负数相乘的几何意义
负数乘以负数等于正数。
负数,是在正数x前面加一个减号,写作—x,代表着和正数x相反的量。我们称x和—x是相反数。-2,-5,-1/3,-√2,分别读作负二,负五,负三分之一,负根号二。-2和2是相反数,1/3和-1/3是相反数。
假如有个人从2009年到2029年20年时间内年年都做生意,年年刚好赔30万元,也就是赚—30万元,从现在(2019年)开始算,5年后他的资产会比现在多
(-30)×5=-150(万)
也就是,5年后他的资产会比现在少150万。而10年后他的资产会比现在多
(-30)×10=-300(万)
那么-10年后他的资产会比现在多多少呢?自然应该是
(-30)×(-10)
但是-10年后,也就是10年前,他的资产应该比现在多300万(因为年年赔30万),所以我们就有等式:
(-3)×(-10)=300(万)
扩展资料
负数最早出现在中国古代数学名著《九章算术》的“方程术”中,在用加减消元法解多元一次方程组时,为了表示小数减大数的运算结果,便引入了负数。
后来,魏晋时期的数学家刘徽在《九章算术注》中对负数的出现作了解释,“两算得失相反.要令正负以名之”,著名数学家柯朗在《什么是数学》中进一步解释道:“引进了符号-1,-2,-3,…以及对b<a的情况,定义b-a=-(a-b).这保证了减法能在正整数和负整数范围内无限制的进行。”
由此可见,负数的产生,是源于减法的需要,负数的本质是小数减去大数所得的差,即负数c=-(a-b)=b-a(此时b<a).举个例子来说,在非负数范围内,我们没办法计算5-8,但可以尽量将它化简,即根据差不变的性质,得到5-8=0-3.把0-3看做一个新的数,简单记作-3。
而原来在非负数范围内可以进行的减法还按原来的方法进行,比如8-5=3-0=0+3=3.更一般的,数学上规定形如3(=0+3)、5(=0+5)这样的数叫做正数,形如-3(=0—3)、-5(=0-5)这样的数叫做负数,把正数、零和负数统称为有理数。
如果你还想了解更多这方面的信息,记得收藏关注本站。