各位老铁们,大家好,今天由我来为大家分享非奇异矩阵是什么意思,以及非奇异子矩阵是什么的相关问题知识,希望对大家有所帮助。如果可以帮助到大家,还望关注收藏下本站,您的支持是我们最大的动力,谢谢大家了哈,下面我们开始吧!
本文目录
n阶非奇异矩阵是什么意思
一种重要而应用广泛的特殊矩阵,数域P上行列式|A|≠0的n阶矩阵A称为非奇异矩阵,如果|A|=0,则A称为奇异矩阵,亦称退化矩阵,又称降秩矩阵。矩阵A是非奇异的,当且仅当A是可逆的或A可表为若干个初等矩阵的乘积。
非奇异矩阵的特点:
1、一个方阵非奇异当且仅当它的行列式不为零。
2、一个方阵非奇异当且仅当它代表的线性变换是个自同构。
3、一个矩阵半正定当且仅当它的每个特征值大于或等于零。
4、一个矩阵正定当且仅当它的每个特征值都大于零。
非奇异什么意思
非奇异应该是非奇异矩阵。非奇异矩阵是亦称非退化矩阵,又称满秩矩阵,一种重要而应用广泛的特殊矩阵,数域P上行列式|A|≠0的n阶矩阵A称为非奇异矩阵,如果|A|=0,则A称为奇异矩阵,亦称退化矩阵。
非奇异矩阵另一种矩阵是用来描述构成实验粒子物理基石的散射实验的重要工具。当粒子在加速器中发生碰撞,原本没有相互作用的粒子在高速运动中进入其它粒子的作用区,动量改变,形成一系列新的粒子。
奇异矩阵什么意思
奇异矩阵是线性代数的概念,就是该矩阵的秩不是满秩。
首先,看这个矩阵是不是方阵(即行数和列数相等的矩阵,若行数和列数不相等,那就谈不上奇异矩阵和非奇异矩阵)。然后,再看此矩阵的行列式|A|是否等于0,若等于0,称矩阵A为奇异矩阵;若不等于0,称矩阵A为非奇异矩阵。同时,由|A|≠0可知矩阵A可逆,这样可以得出另外一个重要结论:可逆矩阵就是非奇异矩阵,非奇异矩阵也是可逆矩阵。如果A为奇异矩阵,则AX=0有无穷解,AX=b有无穷解或者无解。如果A为非奇异矩阵,则AX=0有且只有唯一零解,AX=b有唯一解。
概述
奇异矩阵是线性代数的概念,就是对应的行列式等于0的方阵。
判断方法
首先,看这个矩阵是不是方阵(即行数和列数相等的矩阵。若行数和列数不相等,那就谈不上奇异矩阵和非奇异矩阵)。然后,再看此矩阵的行列式|A|是否等于0,若等于0,称矩阵A为奇异矩阵;若不等于0,称矩阵A为非奇异矩阵。同时,由|A|≠0可知矩阵A可逆,这样可以得出另外一个重要结论:可逆矩阵就是非奇异矩阵,非奇异矩阵也是可逆矩阵。如果A为奇异矩阵,则AX=0有无穷解,AX=b有无穷解或者无解。如果A为非奇异矩阵,则AX=0有且只有唯一零解,AX=b有唯一解。
非奇异子矩阵是什么
n阶方阵A是非奇异方阵的充要条件是A为可逆矩阵,也即A的行列式不为零。即矩阵(方阵)A可逆与矩阵A非奇异是等价的概念。
对一个n行n列的非零矩阵A,如果存在一个矩阵B使AB=BA=E(E是单位矩阵),则称A是可逆的,也称A为非奇异矩阵,此时A和B互为逆矩阵。
好了,文章到此结束,希望可以帮助到大家。