很多小伙伴比较关心圆的方程式推导(如何推导圆的方程),本文带大家一起看看圆的方程式推导(如何推导圆的方程)。
【1.例子】:求x+(m+1)y+m=0所过定点
解:可将原式化为x+y+m(y+1)=0即为x+y=0y+1=0
解得恒过点(1,-1)
由此我们理解到当除了x,y(为一次幂)还有一未知数m时,依然可求得一定点。
由此可联想:当有二次方程组x2+y2+D1x+E1y+F1=0与x2+y2+D2x+E2y+F2=0我们便能求出两定点。
过一已知圆与一直线的两个交点的圆系方程为:x2+y2+D1x+E1y+F1+λ(Ax+By+C)=0【理解2】:有二次方程组x2+y2+D1x+E1y+F1=0①式
x2+y2+D2x+E2y+F2=0②式
①式+②式得x2+y2+D1x+E1y+F1+x2+y2+D2x+E2y+F2=0
此方程仅符合交点坐标(即带入交点后成立)加入参数λ让方程代表恒过两点的所有圆。
更多圆的方程式推导(如何推导圆的方程)请持续关注本站。