大家好,如果您还对函数的拐点是什么意思不太了解,没有关系,今天就由本站为大家分享函数的拐点是什么意思的知识,包括什么是函数的拐点怎样求拐点的问题都会给大家分析到,还望可以解决大家的问题,下面我们就开始吧!
本文目录
函数有明显的转折点叫什么
拐点,又称反曲点,在数学上指改变曲线向上或向下方向的点,直观地说拐点是使切线穿越曲线的点(即连续曲线的凹弧与凸弧的分界点)。若该曲线图形的函数在拐点有二阶导数,则二阶导数在拐点处异号(由正变负或由负变正)或不存在。
可以按下列步骤来判断区间I上的连续曲线y=f(x)的拐点:
⑴求f''(x);
⑵令f''(x)=0,解出此方程在区间I内的实根,并求出在区间I内f''(x)不存在的点;
⑶对于⑵中求出的每一个实根或二阶导数不存在的点x,检查f''(x)在这个点x左右两侧邻近的符号,那么当两侧的符号相反时,这个点(x,f(x))是拐点,当两侧的符号相同时,(x,f(x))不是拐点。
?
扩展资料:
类似术语:驻点相关
对于二维函数的图像,驻点的切平面平行于xy平面。值得注意的是,一个函数的驻点不一定是这个函数的极值点(考虑到这一点左右一阶导数符号不改变的情况);
反过来,在某设定区域内,一个函数的极值点也不一定是这个函数的驻点(考虑到边界条件),驻点(红色)与拐点(蓝色),这图像的驻点都是局部极大值或局部极小值。
拐点的几何意义
拐点是使切线穿越曲线的点
拐点,又称反曲点,在数学上指改变曲线向上或向下方向的点,直观地说拐点是使切线穿越曲线的点(即曲线的凹凸分界点)。
若该曲线图形的函数在拐点有二阶导数,则二阶导数在拐点处异号(由正变负或由负变正)或不存在。在生活中借指事物的发展趋势开始改变的地方(例如:经济运行出现回升拐点)拐点在数学上指改变曲线向上或向下方向的点,直观地说拐点是使切线穿越曲线的点(即曲线的凹凸分界点),若该曲线图形的函数在拐点有二阶导数,则二阶导数必为零或不存在。在现实生活中通常指事物的发展趋势开始改变的地方。
函数的拐点是唯一的吗
不唯一。什么是拐点?二阶导数为零的点称为拐点。函数图像在拐点改变其凹凸性。不改变单调性。(极值点改变单调性)例如y=x^3,X=0是其拐点。三次函数拐点唯一(同时也是三次函数图像对称中心)。但有些函数拐点不唯一。例如正弦函数y=Sinx。X=K兀,(K∈Z)都是图象拐点。
什么是函数的拐点怎样求拐点
若函数y=f(x)在c点可导,且在点c一侧是凸,另一侧是凹,则称c是函数y=f(x)的拐点。我们可以按下列步骤来判断区间I上的连续曲线y=f(x)的拐点:(1)求f''(x);(2)令f''(x)=0,解出此方程在区间I内的实根,并求出在区间I内f''(x)不存在的点;(3)对于(2)中求出的每一个实根或二阶导数不存在的点x0,检查f''(x)在x0左右两侧邻近的符号,那么当两侧的符号相反时,点(x0,f(x0))是拐点,当两侧的符号相同时,点(x0,f(x0))不是拐点。
关于函数的拐点是什么意思到此分享完毕,希望能帮助到您。